Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Coral reefs are essential for the foundation of marine ecosystems. However, ocean acidification (OA), driven by rising atmospheric carbon dioxide (CO2) threatens coral growth and biological homeostasis. This study examines two Hawaiian coral species—Montipora capitataandPocillopora acutato elevated pCO2simulating OA. Utilizing pH and O2microsensors under controlled light and dark conditions, this work characterized interspecific concentration boundary layer (CBL) traits and quantified material fluxes under ambient and elevated pCO2. The results of this study revealed that under increased pCO2,P. acutashowed a significant reduction in dark proton efflux, followed by an increase in light O2flux, suggesting reduced calcification and enhanced photosynthesis. In contrast,M. capitatadid not show any robust evidence of changes in either flux parameters under similar increased pCO2conditions. Statistical analyses using linear models revealed several significant interactions among species, treatment, and light conditions, identifying physical, chemical, and biological drivers of species responses to increased pCO2. This study also presents several conceptual models that correlate the CBL dynamics measured here with calcification and metabolic processes, thereby justifying our findings. We indicate that elevated pCO2exacerbates microchemical gradients in the CBL and may threaten calcification in vulnerable species such asP. acuta, while highlighting the resistance ofM. capitata. Therefore, this study advances our understanding of how interspecific microenvironmental processes could influence coral responses to changing ocean chemistry.more » « lessFree, publicly-accessible full text available December 12, 2026
-
Abstract Coral reefs near high human population areas suffer from sedimentation and increased turbidity due to coastal development. However, there is limited research on how key species respond to turbidity caused by terrigenous sediment and how this response may change with increased water temperatures. This study investigated the effects of ambient and elevated turbidity (+ 26 NTU) in combination with ambient (27.1 °C) and elevated temperature (+ 4.1 °C; 31.2 °C) on the dominant Hawaiian reef coralMontipora capitata, collected from two Kāneʻohe Bay watersheds with distinct environmental histories. Using intermittent flow respirometry, we found that acute (12 h) exposure to elevated turbidity and temperature impacted algal symbionts (Symbiodinium spp.) but not the coral host, suggesting a potential delayed host physiological response. Corals from south Kāneʻohe Bay, where restricted water circulation and urbanization have degraded water quality, were more sensitive to stressors than those from the less-impacted northern sites, indicating that physiological responses vary by location and may be influenced by watershed conditions. The findings suggest that while short-term turbidity and warming impactSymbiodinium spp.immediately, prolonged exposure may lead to cascading effects on the coral host. Understanding these species-specific and location-dependent responses enhances our ability to guide restoration and conservation efforts for coral ecosystems facing both local (turbidity) and global (warming) stressors.more » « lessFree, publicly-accessible full text available October 15, 2026
-
Abstract Successional theory proposes that fast growing and well dispersed opportunistic species are the first to occupy available space. However, these pioneering species have relatively short life cycles and are eventually outcompeted by species that tend to be longer-lived and have lower dispersal capabilities. Using Autonomous Reef Monitoring Structures (ARMS) as standardized habitats, we examine the assembly and stages of ecological succession among sponge species with distinctive life history traits and physiologies found on cryptic coral reef habitats of Kāneʻohe Bay, Hawaiʻi. Sponge recruitment was monitored bimonthly over 2 years on ARMS deployed within a natural coral reef habitat resembling the surrounding climax community and on ARMS placed in unestablished mesocosms receiving unfiltered seawater directly from the natural reef deployment site. Fast growing haplosclerid and calcareous sponges initially recruited to and dominated the mesocosm ARMS. In contrast, only slow growing long-lived species initially recruited to the reef ARMS, suggesting that despite available space, the stage of ecological succession in the surrounding habitat influences sponge community development in uninhabited space. Sponge composition and diversity between early summer and winter months within mesocosm ARMS shifted significantly as the initially recruited short-lived calcareous and haplosclerid species initially recruit and then died off. The particulate organic carbon contribution of dead sponge tissue from this high degree of competition-free community turnover suggests a possible new component to the sponge loop hypothesis which remains to be tested among these pioneering species. This source of detritus could be significant in early community development of young coastal habitats but less so on established coral reefs where the community is dominated by long-lived colonial sponges.more » « less
An official website of the United States government
